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Abstract

A simple two-cohort SIR like model can explain the qualitative behaviour of the
logarithmic derivative estimations of the covid-19 epidemic evolution as observed
in several countries. The model consists of a general population in which the R0

value is slightly below 1, but in which a super-spreading small subgroup with high
R0, coupled to the general population, is contaminating a significant fraction of the
population. The epidemic starts to slow down when herd immunity is reached in this
subgroup. The dynamics of this system is quite robust against non-pharmaceutical
measures.

1 Introduction

The covid-19 epidemic dynamics has to be understood in order to have an intelligent
policy that optimizes society’s well-being. Without understanding that dynamics, one
might take measures that are highly ineffective and/or place a huge burden on society,
with a cost-benefit ratio that is far from optimal.

Unfortunately, not much high-quality data is available that allows us to test against
sophisticated epidemiological models. The most important data, which describes the
propagation of infections, is simply not publicly available for most populations . Con-
firmed cases depend strongly on ever changing policies of testing and are potentially
severely biased. They are very bad proxies to estimate infections. Hospitalisation en-
tries are also depending on decisions which are different from country to country, and
may be changing over time.

The only more or less reliable data are the numbers of dead, which are most probably
within a factor 2 or 3 from the actual numbers of victims of covid-19. The problem
with this proxy is that there’s a long delay and a large smoothing in time, due to
the probability distribution that links the event of being contaminated with dying of
the disease. The simple SIR model suggests that one can obtain an estimate of the
β − γ factor by calculating the deconvolved logarithmic derivative of a proxy curve for
contamination.

In a recent paper [3], the logarithmic derivative of the curves of the number of
deceased people of different countries has been calculated, for countries that have applied
different sets of non-pharmaceutical policies, and have different climates. The behaviour
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of this logarithmic derivative seems to be quite universal, independent of the measures
taken, and of other specific factors. The universal curve is a more or less linear decrease
of the logarithmic derivative, starting around 0.3 per day, and steadily decreasing to a
value of about -0.05, and then remains more or less constant. This might be an effect
of the policies put in place, but it might also be the natural dynamics of the epidemic,
independent of any policy.

We re-calculated the same kind of curve here, for a few selected European countries.
We took the data from [1], and we applied a moving 7-day average to have less noisy
data, and remove weekly cyclic phenomena. Calculating the logarithmic derivative of
the reported deceased cases for some European countries, we confirm the behavioural
findings of the cited paper:

Figure 1: Logarithmic derivative of the weekly smoothed covid-19 deaths for some Eu-
ropean countries.

We note the extreme similarity between all these curves. Only Italy has a somewhat
slower decay, but it starts out also around 0.3. All these curves level off towards the
same slightly negative value of about -0.05. It is also intriguing that the tendency sets
in quite a few weeks before one expects to see the effects on the deaths of the lock-down
policies put in place in some countries. It was the essential point raised in [3]. This
doesn’t necessarily mean that those policies have no effect ; it means that the linear
decrease is not much affected by those policies. We will come to that.

A more interesting curve to look to is that of Brazil. Brazil is interesting for several
reasons. The first one is that the country is in the Southern hemisphere. All seasonal
effects should be opposite there. The second one is that the policies put in place are
quite different from those in Europe (only very partial lock-downs).
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Figure 2: Logarithmic derivative of the weekly smoothed covid-19 deaths for Brazil.

We notice again the same behaviour. However, it seems that the ”constant part” is
rather slightly positive rather than negative even though the data is noisy and it is not
clear if there’s still not a slope downward.

We find again a similar behaviour by analysing for instance, the entries in Belgian
hospitals since March 15. These data were taken from [2]. Unfortunately, there is no
data available before this date, so the plot is truncated on the left. We had to average
the entries over a week because there were weekly periodic effects and the daily data was
too noisy, but if one averages over 7 days, and one calculates the logarithmic derivative
of the hospital entries, one finds again the same universal curve:

Figure 3: Logarithmic derivative of the weekly smoothed hospital entries for covid-19
cases in Belgium.

In this paper, we try to build a model that displays a similar qualitative behaviour.
We do not fit that model to any real-world data, and we do not pretend at all to
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have a working and predictive model for the covid-19 epidemic. We are only exploring
a potential mechanism that might explain the universal qualitative behaviour of the
logarithmic derivative of observed data by building a very simple model exhibiting a
similar qualitative behaviour.

2 Models

2.1 The classical SIR model

In the classical SIR model, there are 3 compartments: the susceptible population,
the infected and contagious population, and the recovering and non-susceptible/non-
contagious population. In reality we only care about the first two compartments, because
we want to study the dynamics of contagion, not of recovery.

The SIR model models the contagion dynamics with two hypotheses. The first
is that any member of the I compartment will potentially contaminate β people per
day, but of these β potential people, only a fraction S/N0 is actually susceptible to be
infected. The second is that each member of I has a probability of γ per day to become
a member of R (that is to say, to lose its contagious statute, and to be removed from the
people concerned in the contagion process). Essentially, it comes down to saying that
on average, a contagious person is contagious for about 1/γ days.

The equations implementing the above hypotheses are as follows:

dI

dt
= βI

S

N0
− γI (1)

dS

dt
= −βI S

N0
(2)

The logarithmic derivative of the infected cases, or of any proxy that is proportional
to the infected cases (such as the number of dead) equals:

d ln I

dt
=

dI
dt

I
= β

S

N0
− γ (3)

We recall that R0 is defined to be:

R0 =
β

γ
(4)

and is interpreted as being the average number of people that a contagious person
will contaminate over time, if the population is naive (that is, S = N0). If R0 > 1, the
illness can start propagating in a naive population.

In the same vain, R(t) is defined as:

R(t) = R0
S(t)

N0
(5)

and is interpreted as being the instantaneous number of people a contagious person
will contaminate over time in a population that has already some immunity. If R > 1,
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the illness continues to propagate, if R < 1, the epidemic starts dying out. The condition
R = 1 equals the condition dI

dt = 0 and is the point where the number of contaminated
people starts diminishing (when the epidemic starts dying out). It is not the point where
no more new infections are happening, but it is the point where herd immunity has been
reached. If at that point, there are still a lot of contagious people, they will continue for
a while to contaminate others, but their numbers will decrease.

Herd immunity is reached when:

S

N0
=
γ

β
=

1

R0
(6)

in other words, when a fraction 1 − 1
R0

of the population got ill.
In an SIR model, initially the logarithmic derivative equals β − γ, and, as the frac-

tion of the susceptible population S/N0 decreases (as ”immunity” increases), the value
evolves towards an asymptotic value between 0 and −γ. When the epidemic ends, the
logarithmic derivative tends towards a constant.

At first sight, this corresponds exactly to what has been observed for the covid-19
epidemic proxies: a steady almost linear decrease from a value around 0.3 towards a
value close to -0.05 or so, followed by a constant value. However, that would mean that
”herd immunity” has been reached in those populations. Most preliminary studies seem
to indicate that in most countries, herd immunity is still far away, and only about 10%
or so of the population has been removed from the ”susceptible” status.

2.2 Super spreader sub population model.

In order to try to reconcile the behaviour of the logarithmic derivative which points to
”herd immunity reached” and the low attack rate in the overall population, we propose
to consider a small super-spreader subgroup in the population.

We consider a small group which is initially also in a susceptible state, and which
will also evolve into its own infectious state, and end up in a recovering state. However,
we suppose that this small group can infect also a significant amount of people in the
general population. The index 1 is used for the general population (of sizeN0) and the
index 2 is used for our super spreader group (of size NS).

If we were to have two separate groups which do not interact, but of which the second
group has a much more contaminating behaviour than the first group, we would obtain
the following set of model equations:

dI1
dt

= β1I1
S1
N0

− γI1 (7)

dS1
dt

= −β1I1
S1
N0

(8)

dI2
dt

= β2I2
S2
NS

− γI2 (9)

dS2
dt

= −β2I2
S2
NS

(10)
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The recovery time for both contaminating groups, which is described by γ, is of course
the same, but the first group has a coefficient of daily potential contaminations equal to
β1 and the second group has a much higher β2 number of potential daily contaminations.

It isn’t very interesting to study this model, because they are simply two independent
SIR models. It becomes more interesting if we introduce the fact that our super spreaders
do contaminate also a lot of people from the first group:

dI1
dt

= (β1I1 + βCI2)
S1
N0

− γI1 (11)

dS1
dt

= −(β1I1 + βCI2)
S1
N0

(12)

dI2
dt

= β2I2
S2
NS

− γI2 (13)

dS2
dt

= −β2I2
S2
NS

(14)

The difference with the previous set of equations resides in the extra term βCI2, added
to β1I1 in the first two equations. It means that each super spreader (in the box I2)
will on average contaminate, on top of his colleagues from group 2, potentially also βC
people from group 1 per day. So people from group 1 can be contaminated by other
people from group 1, or from super spreaders from group 2.

2.3 Example runs

2.3.1 Base model

We propose the following values of the parameters for our first model, Model 1, which
will serve as baseline:

N0 = 11000000 (15)

NS = 50000 (16)

β1 = 0.1 (17)

β2 = 0.5 (18)

βC = 3.0 (19)

γ = 0.15 (20)

The size of the population is like the population of Belgium, with a super spreader
cohort of about 50 000 people. In the general population, R0 = β

γ = 0.67 which means
that the virus doesn’t propagate epidemically in the general population. However, in
the spreader cohort, R0 = 3.33. And a spreader contaminates 3 people per day in the
general population. The average time that one is contagious equals TC = 1

gamma = 6.7
days. We start out with 5 people contaminated in the general population, but 50 people
in the spreader cohort on day 0.
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Figure 4: Coupled model calculation: Model 1

The spreader cohort simply follows the laws of a simple SIR model, and reaches rather
quickly herd immunity and beyond (more than 95% of the spreader cohort ends up
infected). The spreader cohort serves also as a driver for the dynamics in the general
population, and the general population logarithmic derivative follows the spreader cohort
logarithmic derivative. The slowdown of the epidemic is slower in the general population
than it was in the super spreader cohort because β2S2/NS ends up being smaller than
β1S1/N0. As such, it seems that the epidemic is still ”keeping on” for a long time in
the population. At the same time, the speed of infection slows down significantly after
2 weeks while only 5% of the population is infected, which seems low as compared to
the estimated necessary herd immunity if one interprets this dynamics in the frame of
a simple SIR model. In the end, about 20% of the population will end up having been
infected.

2.3.2 Model 2: influence of β1.

If we increase now β1 to 0.14, keeping all the rest equal, so we bring the general popu-
lation ”closer to criticality”, and we call this Model 2, we obtain:
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Figure 5: Coupled model calculation: Model 2

The dynamics is very similar to the base model, except that we now have about 32 %
of the general population that will get infected. We see that bringing the population
close to criticality (R0 close to 1) can significantly increase the amount of people that
get infected. However, lowering β1 instead of increasing it, down to 0.03 from the 0.1
of the base model, will reduce the amount of infected people only moderately (we will
obtain about 10 % of the people infected). In order to reduce β1 from 1 down to 0.03
takes a significant effort for a non-proportional gain in infected people.

2.3.3 Model 3: influence of βC and β2

Reducing the coupling βC from 3.0 down to 1.0 will have a larger effect on the people
involved: only 7.7 % gets infected.

Trying to reduce the self-infection rate in the super spreaders (bringing β2 down from
0.5 to 0.3) will not reduce the end result much in the general population, but will spread
out the epidemic quite longer in time. We call this last modification: Model 3.
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Figure 6: Coupled model calculation: Model 3

As we can see, the general population will end up still with 16 % infected cases, but
everything is much more spread out in time.

2.3.4 Model 4: supercritical general population.

Let us look at a case where the illness is epidemic in the general population, be it at
a very low level. That is to say, let us consider an R0 slightly above 1. We put β1 at
0.2 (so slightly larger than γ which is 0.15), which gives us an R0 value of 1.33. Herd
immunity corresponds to 25% of the population. We also diminish the coupling of our
super spreaders to the general population to a much lower value by putting βC to 0.5.
We call this Model 4.
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Figure 7: Coupled model calculation: Model 4

As we can see, the behaviour is still very similar to the behaviour of the base model.
However, this time, the logarithmic derivative remains a very long time slightly above
0. It is remarkable that even with a very slight coupling between the super spreaders
and the general population, the initial logarithmic derivative of the general population
is still dominated by the influence of the super spreaders.

3 Discussion

With a simple coupled model of a small super spreader population within a general
population, we can obtain the qualitative characteristics of the a priori puzzling evolution
of the logarithmic derivative of proxies of the covid-19 epidemic evolution as found in
several countries. Indeed, the dynamics of this epidemic seems paradoxical at first sight,
when interpreted in the frame of a simple SIR model: the very high apparent R0 derived
from the extremely fast doubling times of the epidemic would hint at a huge peak, and
a necessary herd immunity which would be above 60% of the population. Given the
CFR of the order of 1%, that has lead to predictions of large numbers of death. But
the epidemic seems to have a quickly diminishing logarithmic derivative of most of its
proxies, be it hospital admissions or deceased patients, while at the same time absolutely
not reaching anything near herd immunity. Of course, one may think that this is due
to the policies put into place. But the differences in policies put in place, and the
universality of this observed dynamics may raise questions as to the influence of these
policies versus the dynamics of this epidemic.

The coupling between a super spreader group that does reach herd immunity and
the larger population can qualitatively explain such a phenomenon. If the covid-19
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dynamics has such a kind of phenomenon as a basis, then the dynamics seems to be
quite independent of any non-pharmaceutical measures taken.

The model calculations show that even if the policies do have influences on the β
parameters, these influences don’t modify strongly the overall behaviour. If the overall
population had already an R0 significantly smaller than 1, then all policies decreasing
this value even further don’t have much effect on the outcome: it is only if the initial
R0 is very close to 1 that they might have a effect. If measures diminish the coupling
βC between the overall population and the super spreader cohort, then the effect will be
significant, though. Finally if the measures diminish β2 in the spreader cohort, this will
only spread out the whole dynamics in time, but it will not affect much the end result.

This may explain why there seems to be a universal behaviour to the epidemic, quite
insensitive to specific policies that try to diminish the β factors without having a very
strong effect on βC , the only parameter that seems to have a proportional influence on
the outcome.

The coupled dynamics of a super spreader cohort within a general population that
isn’t critical is quite robust against non-pharmaceutical measures. But even in a general
population that is slightly critical, a small group of super spreaders will dominate the
behaviour in the beginning of the epidemic. The only difference is that the value of the
logarithmic derivative is slightly positive after a while, instead of taking on a negative
value. It might be that Brazil is in this case.

4 Conclusion

The model of a population in which the disease cannot propagate epidemically or would
give rise to a very slightly propagating epidemic with an R0 value near one, in which
a strongly coupled, but small, super spreader cohort is present in which the disease
is strongly epidemic (large R0 value in that group) will have a robust dynamics that
resembles the one observed of the covid-19 pandemic, displaying a very high initial
logarithmic derivatives, decreasing steadily towards a small value. This dynamics is
quite robust against non-pharmaceutical measures that modify the individual β values
of this model.
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