| ministe van agitatie |
17 januari 2007 01:22 |
Citaat:
Oorspronkelijk geplaatst door C2C
(Bericht 2343737)
Washington and Israel have criticised the move.
|
Die Amerikanen en Israëlis toch: ze bekritiseren de levering van afweerraketten met een bereik van 12 kilometer. Voelen ze zich bedreigd als Iran zich wil verdedigen? Welke boodschap sturen ze daarmee in de wereld?
Citaat:
A high degree of battle performance automation, unique algorithms and introduction of artificial intellect elements into the system make it possible to detect targets and then switch to autotracking of the two most dangerous threats practically without the participation of operators. The combat vehicles of the Tor-M1 system can detect targets from 0 to 64 degrees, while the firing channels of each combat vehicle can engage targets from 0 to 70 degrees in elevation and even up to 90 degrees in case of diving PGWs.
Tor-M1, has no counterparts in other countries. According to Russian experts, this system can best meet the requirements of Gulf states. Above all, the Tor-M1 is intended to combat high-precision attack weapons which, should hostilities begin in the region, will most likely be used to destroy oil industry facilities. Tor is indispensable against cruise missiles, guided aerial bombs and low-flying terrain-following fire support helicopters.
Tor detects targets at a distance of 25 kilometers and kills them at a distance of 12 kilometers. In combating manned aviation, Tor is thrice and 1.5 times more efficient than foreign systems of the same class - France's Crotale and Britain's Rapier, respectively. These systems are unable to combat high-precision weapons. The rate of fire is 24 launches per minute and it allows simultaneous engagement of several targets.
|
Citaat:
Russia's Tor-M1 SAM system is the world's first short-range air defense system specifically tailored for highly effective use against the HPW.
The Tor-M1 SAM system has been developed and series produced by the Antey Concern. The system is a logical sequel to the OSA SAM family, capable of repelling existing and potential threats with the maximum efficiency.
The core of the Tor-M1 SAM system is its combat vehicle (CV) whose main version is based on the cross-country tracked chassis of an intermediate weight category.
The CV comprises:
- TAR with a ground-based radar interrogator;
- target and missile tracking radar (TTR);
- backup TV optical tracker designed to autotrack targets in angular coordinates;
- high-speed multiplex digital computer;
- air situation display equipment, CV systems and means monitoring equipment, and CV commander and operator control panels;
- coded radio command operational communications system;
- navigation, survey control and orientation equipment;
- surface-to-air missiles in group launching transporting containers (two containers with four SAMs in each);
- primary power supply with the generator driven by the gas turbine engine or the engine of the self-propelled chassis;
- auxiliary equipment.
The Tor-M1 CV detects and selects air targets on the move and fires missiles at them from short halts.
The antenna system of the TAR is stabilized. It produces an eight-portion radiation pattern (Fig. 2). The scanning interval is 1 s, the beam flare (width) in the vertical plane is 4 deg; the portion switchover (scanning) mechanism is electronic. Any three portions of the radiation pattern can be scanned within one scanning interval. The entire elevation zone covers 32 deg and can be scanned within 3 s. The regular scanning program is selected in such a way that, in order to increase the detection range for low-altitude targets, the first portion is scanned twice within three scanning intervals.
To augment the TAR potential, the antenna system of the radar can be revolved mechanically through 32 deg with a detection zone of 32 to 64 deg. This means that two CVs of the Tor-M1 system can make up a detection zone of 0 to 64 deg, and the firing capabilities of each CV assure target engagement within 0 and 80 deg in elevation.
To increase the pulse energy, the length of the emitted pulse is increased, and the pulse is internally modulated. The radar can also operate in an active jamming environment when the entire transmitted power of the radar is accumulated in one critical portion instead of being distributed among three portions.
The receivers perform an automatic threshold and criterional processing of signals in digital form.
To detect targets against the background of the earth's underlaying surface, atmospheric perturbations or man-made passive jamming, the TAR is provided with the moving target indication (MTI) feature assuring detection of both high- and low-speed (up to 10 m/s) targets without "blind" speeds. The MTI system has two rejection zones allowing simultaneous suppression of both the clutter and moving passive interferences.
After their first (coarse) cessing, the signals are fed to a computer where target track initiation is performed. The most dangerous threats are identified by their minimum approach flight time, altitude and crossover range. This information is then used to designate the targets for the TTR. The accuracy of target designation is 100 m in range, 20 min in azimuth and 2 deg in elevation.
The main characteristics of the TAR and zone for detection of a target with the effective RCS equal to 0.1 m2 and detection probability p = 0.5. The radar has a detection range of 18 to 22 km, which is sufficient to engage air targets (depending on their speed) at ranges from 12 km and less and within virtually all elevations (up to 64 deg).
The TTR of the Tor-M1 SAM system is of the pulse Doppler type capable of determining four coordinates of the selected target. To assure steady passover to autotracking of point targets and obtain highly accurate target coordinates, the radar uses a high-powered pulse transmitter.
To reduce the time required to switch to the autotracking mode and materially weaken the influence of the motion of the target on its lockon, the TTR uses a phased antenna array (PAA) with a small number of elements, which deflects the antenna beam at a level of 3 dB within n7.5 deg. The fine target search is then accomplished through electronic deflection of the antenna beam within 7 deg in elevation and 3 deg in azimuth. With the selected accuracy of the target designation received from the TAR, the fine search limits assure 100-percent target lockon. The time required to switch to autotracking ranges from 400 to 600 ms, depending on the target speed and interferences. With this passover time, the target seems to be "frozen" with respect to the scanning sector of the PAA, ensuring the high reliability of the switch to the autotracking mode. The TTR uses the Doppler signal processing, pulse compression, fast Fourier transforms, and narrow-band filtration, which, when combined with the high-energy pulse, large gain of the PAA and low level of its sidelobe and background noise, makes the TTR highly immune to jamming.
The Tor-M1 SAM system uses a TV optical tracker, which autotracks target angular coordinates, as a backup tracking system.
The missile armament is used effectively by discriminating between target types. The TAR allows discrimination between four classes of targets: point targets (or HPW), airplanes, helicopters and unidentified targets. This results in increased probability of engagement of small-size targets, notably HPW.
To track missiles, the TTR has two channels. One of the channels serves to lock on to and track the missile by using beacon signals at the starting leg of the flight. The second channel uses the missile responder signals received via the PAA to track the missile throughout its flight path.
The commands are transmitted to the missile by the radar transmitter via the PAA. The indicator equipment, incorporating a commander's target flight path display, TTR target and missile tracking displays, a TV tracker video monitor, TAR operator displays, control panels and signalling devices, are brought onto a single console located in the CV operator compartment. The seat of the driver-mechanic, who drives the CV, starts and monitors the operation of the gas turbine driven power supply unit, is also located there.
In terms of shape, the Tor-M1 missile is of the canard type. It is launched vertically to a height of 15 to 20 m with the aid of a powder catapult and is then inclined by a special thruster towards the target, and its main solid propellant rocket motor takes over.
The motor of the missile is single-stage and two-mode. In the launching mode, the motor accelerates, within four seconds, the missile to a maximum speed of 850 m/s; in the cruising mode, which lasts for 12 seconds of flight, it maintains the above speed. This makes for the required power-to-weight ratio of the missile, allows the missile to cover a distance of 8 km in powered flight and effectively engage targets flying at speeds below 700 m/s and g-loads up to 10 g.
The missile is furnished ready for use inside a launching transporting container designed to accommodate four missiles.
One major characteristic of the short-range missile systems is the reaction time or the interval between the moment of target detection by the TAR and the instant of missile launch. One can single out three characteristic stages in the process:
- detection of targets by the TAR, their processing and track initiation, establishing priorities according to the relative threat criterion, and production of target designation data for the TTR;
- orientation of the antenna post towards the most dangerous target in azimuth and elevation;
- fine search of the target, switchover to autotracking and missile launch.
The total reaction time of the Tor-M1 SAM system changes from 3.4 to 10.6 s, depending on the employment conditions and intensity of interference. When employed on the move, the two seconds required to stop the CV are added to this time. It should be stressed that the high degree of battle performance automation, employment of artificial intellect and unique algorithms make it possible to perform all the operations, involving detection of targets and the switch to autotracking the two most dangerous ones, virtually without operator intervention.
Four Tor-M1 SAM CVs are organic to one SAM battery, which is the smallest tactical subunit capable of executing combat missions independently. To control the combat actions and fire of the CVs, each SAM battery has an automated battery command post (BCP). Using the coded communications and navigation, survey control and orientation equipment of the CVs, the BCP produces target distribution and precludes accidental concentration of fire of several CVs on one target. The essence of target distribution resides in the automatic exchange of information on autotracked targets among the CVs via the BCP and automatic reassignment of priorities by the CVs with corrections made for received information. The target distribution system realizes the step-by-step principle of adaptation of the CVs to the current air situation in real time. When necessary, the battery commander may intervene into (correct) the target distribution process and execute other combat control tasks.
Furthermore, the BCP can receive and display the current air situation (10 most dangerous targets) from one (any) subordinate CV and from the TAR located at a higher command post (CP) and establish operational communication inside the SAM battery and with the higher CP.
The entire process of control over the Tor-M1 SAM system CVs can be realized when all the elements of the SAM battery are on the move or brought to a halt. The BCP also integrates the SAM battery or a local system organized around it into the general structures of the air defense systems of a large unit or region of the country.
In addition to these combat means, the Tor-M1 SAMs are provided with transloaders, maintenance trucks and mobile SPTA sets.
Overall, the short-range SAM systems form an important component part of air defense units protecting installations and troops in most states in the world. The combat experience gained in recent local wars and conflicts lends support to the need to establish and continuously upgrade the SAMs now in service with motorized rifle divisions. The lack or shortage of modern SAMs in the air defense systems of present-day motorized rifle divisions leads to heavy losses or other serious consequences inflicted by enemy air attacks and the wide-scale employment of airborne short and medium-range HPW.
Today and for the foreseeable future only one system is capable of fully meeting the present-day requirements placed on the SAM systems of motorized rifle divisions: the Russian-made Tor-M1 SAM.
Moreover, it should be pointed out that to date the Antey Concern has come up with truck-and-trailer, trailer and container versions of accommodating the Tor-M1 SAM system components (antenna/launcher, display equipment and power supplies) on various movers to cover vital point and small-sized installations.
In this case the basic combat and operational characteristics of the mobile SAMs (Tor-M1P) are retained at the level of the basic (self-propelled) version, but the former may cost 30 percent less than the basic version. In addition, the mobile versions of the Tor-M1P SAM system offer more comfort to the crew seated in the display equipment compartment and make them less vulnerable in combat, as the display equipment compartment may be arranged in a shelter at a distance of 50 m from the antenna/launcher assembly.
On customer request the basic version of the Tor-M1P SAM system may be developed into local highly automated systems to protect vital point and small-sized installations, which may subsequently be integrated into the unified air defense system of a region (country)
|
|