![]() |
Registreren kan je hier. Problemen met registreren of reageren op de berichten? Een verloren wachtwoord? Gelieve een mail te zenden naar [email protected] met vermelding van je gebruikersnaam. |
|
Registreer | FAQ | Forumreglement | Ledenlijst | Markeer forums als gelezen |
Buitenland Internationale onderwerpen, de politiek van de Europese lidstaten, over de werking van Europa, Europese instellingen, ... politieke en maatschappelijke discussies. |
Bekijk resultaten enquête: Wat weet u over Peak Oil? | |||
Niets, ik ben dom en lui. Ik verkies niet te weten. |
![]() ![]() ![]() |
8 | 36,36% |
Voorlopig weinig. Maar ik doe mijn best om er zo snel mogelijk meer over te weten. |
![]() ![]() ![]() |
6 | 27,27% |
Ik ken het fenomeen. Het heeft m'n leven veranderd. Ik bereid me stilaan voor. |
![]() ![]() ![]() |
5 | 22,73% |
Als expert lobby ik nu al opdat politici een beleid van Peak Oil Preparedness implementeren voor het te laat is. |
![]() ![]() ![]() |
3 | 13,64% |
Aantal stemmers: 22. Je mag niet stemmen in deze enquête |
![]() |
|
Discussietools |
![]() |
#101 | |
Banneling
Geregistreerd: 5 maart 2004
Berichten: 4.052
|
![]() Citaat:
|
|
![]() |
![]() |
![]() |
#102 |
Banneling
Geregistreerd: 3 mei 2005
Berichten: 1.275
|
![]() Effe voor mijn vriend Alcazar een aantal feiten op een rijtje.
1. Ik ben een grote voorstander van alternatieven, en ik geloof ook dat daar potentieel in zit. Maar dat neemt niet weg dat peak oil iets is waar we rekening mee moeten houden, en dat grote gevolgen kan hebben voor onze algemene welvaart. 2. Ik ben helemaal niet tegen het kapitalisme. Ik begrijp echt niet waar je dat vandaan haalt. Integendeel, zonder kapitalisme zouden we al helemaal ten onder gaan. Alleen, precies door de sterke groei van zogenaamde "transitie-economieën", die nu voor het eerst serieus het kapitalisme omhelzen (China, India, Brazilië, Rusland), zullen we geconfronteerd worden met een wereldwijde energiecrisis. Als er één systeem is dat deze crisis kan oplossen, is het wel het kapitalisme. Maar dat beteken nog niet dat het zonder schokken zal verlopen. 3. Jij bent gewoon zeer optimistisch. Ik ben eerder pessimistisch. Beide perspectieven zijn nodig om realistische conclusies en maatregelen te treffen. Ik ben helemaal geen doemdenker. 4. Na veel studie ben ik gewoon stilaan beginnen concluderen dat de transitie naar een minder carbon-intensieve maatschappij gewoon moeilijk ligt, terwijl ze toch noodzakelijk zal zijn. Er is geen enkele energiebron die op tijd massaal kan geïmplementeerd worden om de komende olie-crash te verzachten. Ik voorspel niet het eind van de wereld. Wel een crisis. Laten we deze discussie dus op een volwassener niveau voeren (mea culpa van mijn kant ook). En laten we elkaars tegengestelde visies rustig exploreren. Ik zal nu gaan joggen, speciaal voor u, Alcazar. ![]() |
![]() |
![]() |
![]() |
#103 | |
Banneling
Geregistreerd: 5 maart 2004
Berichten: 4.052
|
![]() Citaat:
80.000 jaar geleden overleefde de mensheid een nucleaire winter door de uitbarsting van een supervulkaan op summatra. U weet wel, de regio waar het momenteel op geofysisch vlak extreem onrustig is, sommige professoren zien het geruis in de diepte als een voorteken ... ( drums in the deep, they're coming ! ![]() 80 % van alle levende wezens stierven toen af, de mens, afstammeling van een voorhistorische spitsmuis, overleefde het spektakel. Wij zijn leerling tovenaars, oliepiek, wij zijn hier door 'hen', niet meer voor 'hen'. Maar dat is een andere discussie. |
|
![]() |
![]() |
![]() |
#104 |
Banneling
Geregistreerd: 3 mei 2005
Berichten: 1.275
|
![]() Bestel forumgenoten, laatst publiceerde het Energybulletin dit interessante artikel van de hand van Colin Campbell:
The Second Great Depression : Causes & Responses by Colin J. Campbell Financial Consequences of Peak Oil It is becoming evident that the financial and investment community begins to accept the reality of Peak Oil, which ends the First Half of the Age of Oil. They accept that banks created capital during this epoch by lending more than they had on deposit, being confident that Tomorrow’s Expansion, fuelled by cheap oil-based energy, was adequate collateral for Today’s Debt. The decline of oil, the principal driver of economic growth, undermines the validity of that collateral which in turn erodes the valuation of most entities quoted on Stock Exchanges. The investment community however faces a dilemma. It desires to protect its own fortunes and those of its privileged clients while at the same time is reluctant to take action that might itself trigger the meltdown. It is a closely knit community so that it is hard for one to move without the others becoming aware of his actions. In this situation, interest shifts to commodities and to short term trading to benefit from daily or hourly fluctuations in price, implying that there are few valid genuine long-term investments left. The scene is set for the Second Great Depression, but the conservatism and outdated mindset of institutional investors, together with the momentum of the massive flows of institutional money they are required to place, may help to diminish the sense of panic that a vision of reality might impose. On the other hand, the very momentum of the flow may cause a greater deluge when the foundations of the dam finally crumble. It is a situation without precedent. The following is the summary of a presentation to the Edinburgh Conference by C.J.Campbell, which extreme as it may sound, seems consistent the new posture adopted by the International Energy Agency. The Second Great Depression : Causes & Responses SUMMARY Oil was formed but rarely in time and place in the geological past, which tells us that it is subject to depletion. It also has to be found before it can be produced. Finding oil is primarily a matter of geology, notwithstanding the technical, political and economic factors. So, an understanding of petroleum geology forms the bedrock for forecasting future production. Depletion itself is easy to grasp as every beer drinker knows: the faster he downs his draught, the sooner it is gone. However, the issue is not about finally running out of oil, which will not happen for many years. What does concern us – and most gravely– is the long downward slope that opens on the other side of peak production. Oil and Gas dominate our lives, and their decline will surely change the World in radical and unpredictable ways. How has this self-evident reality been so successfully confused and denied? In short, oil companies under-reported discovery to comply with strict Stock Exchange rules, and revised reserves upwards over time, delivering a comforting but misleading image. But those days are over, forcing the major companies to find reserves by merger rather than in the ground. Some OPEC countries, for their part, started reporting original, not remaining reserves, as they vied with each other for quota, explaining why their reported reserves have barely changed for 20 years. Furthermore, definitions of the several categories of oil and gas are confused. Public data are grossly unreliable. Production has to mirror discovery after a time lapse, as amply demonstrated in one country after another. The peak of production comes broadly when half the total has been consumed. Deciphering the conflicting evidence as well as possible indicates that approximately 944 Gb (billion barrels) of Regular Conventional oil have been produced; 764 Gb remain in known fields (Reserves); and 142 Gb are Yet-to-Find. If so, the midpoint of depletion was passed in 2003, meaning that peak production is imminent. On present estimates, the overall peak of all categories of oil arrives in 2006, with that of oil and gas combined coming about two years later. A widely held myth proclaims that technology will deliver more, when its main impact has been to hold production higher for longer, accelerating depletion. The observed growth in reserves has been an artefact of reporting, not technology, save in special cases. The First Half of the Age of Oil now closes. It lasted 150 years and saw the rapid expansion of industry, transport, trade, agriculture and financial capital, allowing the population to expand six-fold. The financial capital was created by banks with confidence that Tomorrow’s Expansion, fuelled by oil-based energy, was adequate collateral for To-day’s Debt. The Second Half of the Age of Oil now dawns, and will be marked by the decline of oil and all that depends on it, including financial capital. It heralds the collapse of the present Financial System, and related political structures, speaking of a Second Great Depression. But there are survival strategies. Governments may be persuaded to sign the Depletion Protocol whereby imports are cut to match world depletion rate, such that world prices fall into reasonable relationship with cost, and profiteering from shortage avoided; the current monumental waste of energy may be reduced; renewable energies from wave, tide, wind, solar, hydro and geothermal sources may be brought in; and the nuclear option re-evaluated. The survivors, whose numbers may not greatly exceed those of the pre-oil age, may find silver linings as they rediscover rural living, regionalism, diversity and local markets, coming to live in better harmony with themselves, each other, and the environment in which Nature has ordained them to live. But the transition will be a time of great tension, including international tension as consumers vie for access to dwindling supplies, and as city life becomes unsustainable. |
![]() |
![]() |
![]() |
#105 |
Banneling
Geregistreerd: 3 mei 2005
Berichten: 1.275
|
![]() Bekijk zeker eens de grafiekjes. Zoals je ziet is er gewoon geen ontsnappen aan de piek.
En we zullen enorm veel internationale samenwerking nodig hebben om erover heen te raken. Dit is wellicht het grootste politieke probleem sinds de Tweede Wereldoorlog. Misschien wel het grootste uit de moderne geschiedenis van de mensheid. Basic Choices and Constraints on Long−Term Energy Supplies Population growth and energy demand are exhausting the world's fossil energy supplies, some on the timescale of a single human lifespan. Increasingly, sharing natural resources will require close international cooperation, peace, and security. Paul B. Weisz Human society, like any system composed of dynamic processes, depends on an external energy source. Historically, that source was the Sun, which provides heat, light, and photosynthesis for food to support work energy by man and animal, and affects wind and water motion. Since the early 19th century, though, the discovery of and access to a vast supply of fossil fuels within Earth has enabled the industrial revolution, near−exponential growth of population,1 technologies, and wealth. That period could well be renamed the energy revolution (see figure 1). ![]() Our basic choices are limited. Nature's energy resources are confined to two categories: Earth−stored fossil residues and nuclear isotopes, whose economic utility is limited by the finite amounts that exist on Earth, and the radiation flux of solar energy, whose economic utility is limited by the finite rate at which we can capture the Sun's energy and by the land areas that societies can dedicate to harness it. The longevity of the fossil energy supply and the net rate of solar energy availability are both reduced by the energy consumed through their conversion to a suitable energy form and the technologies that accompany that conversion: storage, delivery, maintenance, and repair of environmental damage. Solar−derived consumer energy, whether as electricity, biomass, or wind, represents a clean, alternative energy form. It is important to understand a basic law of nature: Energy, once used, is not regenerable. So the public term "renewable energy" is misleading. The following analysis examines the magnitudes of the world's energy supplies and the basic constraints on our ability to support in the long term society's demands using those finite supplies. To put those magnitudes into a human context for policymakers and the public, the longevity of our resources will be expressed on the scale of a human lifespan (where 1 human lifespan is approximately 75 years). Energy demands In viewing overall societal energy issues, it is useful to express energy magnitudes in units of the quad (Q), where 1 Q = 1015 BTU, roughly equal to 2.5 × 1014 kcal or 1.06 × 1018 joule. Current US energy consumption is about 100 Q/year, roughly a quarter of the world's total demand.2 Energy demand by humanity continues to rise. An increase of about 1.5% per year is projected in the US and world demand is expected to increase by 1−2% per year for many decades, mainly due to continued population growth. While total demand is, of course, influenced by personal demand, even unusually large (20%, say) conservation efforts would be nullified by population growth in less than 20 years. Earth−stored resources
![]()
![]()
![]() High carbon dioxide emissions also accompany the conversion of coal to any motor fuel. For more details on how CO2 complicates the energy problem, see the box on page 50.
The amount of solar energy received across US latitudes is approximately 22 Q per year per 4000 km2 (about a million acres) on average.8 Technologies based on this resource have the potential to become major contributors to our energy supplies (see Sam Baldwin's article in Physics Today, April 2002, page 62.) Photovoltaic solar cells convert 10−20% of incident radiation directly to electricity. Figure 5 illustrates how large a surface area of cells would be required to generate a particular amount of electricity. The yellow region indicates electricity produced directly at the cell. The blue region is a more realistic mapping and indicates the larger cell areas needed to cover the energy losses in transformers, transmission, power−equalization over time, and efficiency losses that occur for any conversion to gaseous or liquid fuels. Thus about 40−80 thousand km2 of area—roughly 2−4 times the size of Massachusetts—could supply about 20 Q, or 20−25%, of today's US total energy requirements. That amount and more of available land can probably be found in the US. But the size illustrates the magnitude of the technological and social impact. It is instructive to compare what fraction of other nations' total areas would be required to supply their current energy demand. The percentage ranges from as low as 0.2% for Australia to as much as 24% of the land occupied by Belgium (see the table on page 51). The data assume a 15% solar−cell efficiency, and 50% efficiency at the site of consumption. Biomass energy production requires photosynthesis exclusively on fertile land, but it is another much discussed alternative energy. The US has about 1.6 million km2 (400 million acres) of arable land that provides food for the current US population, with about 20% of the food left for export. The US is likely to progressively need that 20% in the next few decades as its population increases. Moreover, the current agricultural productivity depends on fossil fuels to provide the reactive nitrogen required to make fertilizer. Otherwise, about three to four times that 1.6 million km2 of arable land will be needed to provide photosynthetic nitrogen fixation to generate the current food supplies. Quite apart from fertile land requirements, the solar−to−biomass conversion efficiency is very much smaller than for the conversion of solar to electrical energy. Modern agriculture can generate about 1−1.5 million kg of biomass vegetation per square kilometer of land with about 16 000 BTU per kg, for a total of about 0.06−0.09 Q on 4000 km2 of land. However, after accounting for external energy consumed through the agricultural process and the conversion of biomass to a useful fuel, the net energy production, if any, is less than 0.02 Q on 4000 km2—two orders of magnitude smaller than that of photovoltaic cell conversion. That is, biomass conversion would require some 100−fold more area of fertile land. Wind energy is another secondary product of solar radiation. Although few studies have assessed its ultimate technological promise, researchers estimate that the technology could potentially generate a maximum of 3−22 Q of electricity in the US.9 Energy losses due to transmission, supply, and demand fluctuation or conversion to other energies will reduce the actual contribution, but wind energy provides a significant potential resource contribution. ![]() Energy science Energy availability determines, drives, limits, and shapes the working capability of all processes of society.11 The silent and plentiful gift of energy has fundamentally influenced the application of economic theory as well as the teachings of most other disciplines in the educational system.
That history illustrates the profound economic importance of the concept of net energy. The economic value of an alternative energy technology depends on the net rate of energy QNE it will deliver after the rate of energy production QPR is debited by the energy consumed for its operation QOP and the energy invested in its creation E during its lifetime T: QNE = QPR − (QOP + E/T). For example, ethanol production from biomass, which involves a complex agricultural and industrial processing system that requires large and diverse external energy inputs QOP, easily results in a negative QNE, yet government subsidies can make the production profitable to producers.
A knife−edge issue The major source of the world's energy supply, the fossil fuels, will decline in availability within several decades. It is of paramount importance that the public and policymakers recognize the ensuing shortages and the urgent need for policies that will address them. In particular, an urgent commitment to solar and nuclear energy technologies appears to be mandatory for the long term. Solar energy technology offers the most promising capabilities for the future because photovoltaic cells can generate potentially large quantities of electricity for nations with sufficient land area. Worldwide use, though, will depend on international peace and cooperation. Current uranium fission technologies could provide enough energy for a few decades.14 Advanced fission technologies that involve breeder methodologies and the use of thorium, as envisioned by Edward Teller,15 could extend that timeline to many hundreds of years. Controlled nuclear fusion remains a unique energy alternative of vast magnitude. Moreover, nuclear technologies are not dependent on location and land area. At the moment, public concern over potential risks has virtually stopped the pursuit of this energy source. Peaceful cooperation among nations will be increasingly and vitally important for accessing and sharing our remaining resources. Human society faces no greater risk, however, than ignorance of the basic laws of nature, the role and finite magnitudes of energy sources, the arithmetic of population growth (see Albert A. Bartlett's article in this issue on page 53), and their consequences on the survival of humanity. As Shirley Ann Jackson, president of the American Association for the Advancement of Science, points out (see APS News, October 2003, page 8), "The public policy arena needs the voice of science itself . . . weighing in on knife−edge issues with the voice of reason." I acknowledge the tireless assistance of David Pimentel, professor of agricultural sciences at Cornell University, for advice on agricultural science; its role in food production, land use, and biomass production; and their relevance to energy issues. Paul B. Weisz is an emeritus professor of chemical and bioengineering at the University of Pennsylvania and a retired senior scientist and manager at the Central Research Laboratory of the Mobil Corp. He is also currently an adjunct professor of chemical engineering at the Pennsylvania State University. References 1. United Nations statistics available at http://www.un.org/esa/population/pub...ixbilpart1.pdf. 2. Energy Information Administration, Annual Energy Outlook 2004, rep. no. DOE/EIA−0383(2004), available at http://www.eia.doe.gov/oiaf/aeo; International Energy Outlook 2004 rep. no. DOE/EIA−0484(2004), available at http://www.eia.doe.gov/oiaf/ieo; Annual Energy Review 1999, rep. no. DOE/EIA−0384(99) (2000), available at http://tonto.eia.doe.gov/ftproot/multifuel/038499.pdf. 3. M. K. Hubbert, in Drilling and Production Practice, American Petroleum Institute, Washington, DC (1956); M. K. Hubbert, Am. Assoc. Pet. Geol. Bull. 51, 2207 (1967). 4. J. Hakes, Long Term World Oil Supply, presentation at the 18 April 2000 meeting of the American Association of Petroleum Geologists, New Orleans, LA, available at http://www.eia.doe.gov/pub/oil_gas/p...ng_term_supply. 5. Table 8.1 World Crude Oil and Natural Gas Reserves, 1 January 2003, Energy Information Administration/Department of Energy update posted on 8 March 2004 for International Energy Annual 2002, available at http://www.eia.doe.gov/pub/internati...02/table81.xls 6. National Petroleum Council Committee on Natural Gas, Natural Gas: Meeting the Challenges of the Nation's Growing Natural Gas Demand, vol. 1, National Petroleum Council, Washington, DC (1999). 7. W. Youngquist, Shale Oil: The Elusive Energy, newsletter no. 98/4, M. King Hubbert Center for Petroleum Supply Studies, Golden, CO (1998). 8. W. E. Reifsnyder, H. W. Lull, Radiant Energy in Relation to Forests, US Dept. of Agriculture, Forest Service, Washington, DC (1965); E. P. Odum, Fundamentals of Ecology, 3rd ed., W. B. Saunders, Philadelphia (1971); M. Slesser, C. Lewis, Biological Energy Resources, Wiley, New York (1979); S. B. Weiss, Can. J. Forest Res. 30, 1953 (2000). 9. D. Pimental et al., BioScience 52, 1111 (2002); EIA Monthly Energy Review, DOE/EIA−0035(95/02), Washington, DC (February 1995). 10. R. Shinnar, Technol. in Soc. 25, 455 (2002). 11. P. B. Weisz, in Chemical Engineering in a Changing World, W. T. Koetsier, ed., Elsevier Scientific, New York (1976). 12. N. Georgescu−Roegen, The Entropy Law and the Economic Process, Harvard U. Press, Cambridge, MA (1971). 13. R. Corkish, Sol. Prog. 18, 16 (1997). 14. The Future of Nuclear Power: An Interdisciplinary MIT Study (2003), available at http://web.mit.edu/nuclearpower. 15. E. Teller, Memoirs: A Twentieth−Century Journey in Science and Politics, Perseus, Cambridge, MA (2001), p. 565. 16. US Department of Energy, Office of Fossil Energy, Carbon Sequestration Research and Development, (December 1999), available at http://www.fossil.energy.gov/program.../front_feb.pdf. 17. M. M. Maroto−Valer et al., Am. Chem. Soc. Div. Fuel Chem. 49, 373 (2004). 18. K. L. Griffin, J. R. Seemann, Chem. Biol. 3, 245 (1996) [MEDLINE]; H. Elderfield, Science 296, 1618 (2002) [MEDLINE]. ![]() ![]() ![]() ![]() Box1: Basic Problems Associated with Carbon Dioxide Emissions The massive quantities of carbon dioxide currently generated during fossil fuel consumption are responsible for progressive global warming. This problem has become a matter of global concern and has led to large efforts and expenditures for research in technologies designed to sequester CO2.16 Unfortunately, permanent immobilization confronts fundamental problems. Like H2O, CO2 is a chemically inert molecule. Its only potential reaction partners possibly available in sufficient magnitudes may be mineral oxides—for example, calcium− and magnesium−silicates. They exist in dense geological formations. However, no useful reaction rate is achievable in such locations. Their use would require mining, shipping, grinding, special activation processing,17 and disposal of gigatons of the solids. Most prominent research projects are directed toward massive physical storage of CO2 by injection into those geological formations or within the deep oceans (see Jorge L. Sarmiento and Nicolas Gruber's article in Physics Today, August 2002, page 30). It is difficult to accurately predict the integrity of such physical storage over long periods16 because many variables in complex environments are involved. Attempts to manipulate marine or terrestrial ecosystems and increase the amounts of CO2 these sinks naturally hold are fraught with great complexities that involve multiple and interactive processes.18 Any conversion of a carbonaceous fossil fuel to a fuel of lower carbon content—including the conversion all the way to hydrogen—will eject the excess carbon as CO2. The problem of its emission to the atmosphere is simply transferred from the points of consumption to the location where the conversion process takes place. Therefore, the CO2 problem is not eliminated by a "hydrogen economy" if the hydrogen is created by the conversion of coal, petroleum, or natural gas. ![]() ![]() Laatst gewijzigd door oliepiek : 17 mei 2005 om 11:28. |
![]() |
![]() |
![]() |
#106 | |
Gouverneur
Geregistreerd: 23 juli 2003
Berichten: 1.176
|
![]() Citaat:
__________________
Om mani padme hum |
|
![]() |
![]() |
![]() |
#107 |
Banneling
Geregistreerd: 5 maart 2004
Berichten: 4.052
|
![]() Interessant artikel.
Ik ga alvast wat ammo voor mijn AK 47 indoen, en weldra een cursuske urban warfare volgen, mijn jujitsu opfrissen en op de zwarte markt wat raketlanceerders kopen, kan altijd van pas komen. |
![]() |
![]() |
![]() |
#108 | |
Banneling
Geregistreerd: 3 mei 2005
Berichten: 1.275
|
![]() Citaat:
![]() |
|
![]() |
![]() |
![]() |
#109 | |
Banneling
Geregistreerd: 5 maart 2004
Berichten: 4.052
|
![]() Citaat:
![]() |
|
![]() |
![]() |
![]() |
#110 |
Perm. Vertegenwoordiger VN
Geregistreerd: 6 januari 2003
Locatie: US
Berichten: 14.572
|
![]() In 1930 hebben ze zo grafiekjes gemaakt over de stijging van het telefoonverkeer, toen vermeldden ze dat binnen de dertig jaar alle vrouwen zouden telefoonschakelaar zijn. Niemand had er toen een flauw benul van dat electronische schakelaars zouden ontwikkeld worden.
Er waren zo ooit zelfs projecties over de straten van London die gevuld zouden worden met paardekak als de mobiliteit zo zou blijven doorgroeien. Niemand had er toen benul van dat er wagens die geen stront uitstoten zouden ontwikkeld worden. Er is tegenwoordig slechts een beperkte nood aan alternatieve energiebronnen aangezien olie nog in abundance aanwezig is. Projecties maken over periodes van 50 jaar, en daarbij de energieconsumptie laten groeien terwijl ge de alternatieven niet laat groeien of zelfs niet laat ontwikkelen zijn wetenschappelijke pulp.
__________________
In het begin was er niets, wat ontplofte. |
![]() |
![]() |
![]() |
#111 |
Perm. Vertegenwoordiger VN
Geregistreerd: 31 maart 2004
Locatie: Nabij het Reigersnest
Berichten: 10.447
|
![]() ik kan me toch niet ontdoen van het gedachte dat dit toch wat sterk overdreven is.
Er is meer dan olie, voor steenkool zitten we nog meer dan honderd jaar goed, en aardgas ook nog minstens 50 jaar. olie gaat rapper opzijn, zeker als de exponentiele groei doorzet... Maar er is nog altijd de optie om massaal op kernenergie over te stappen, daarmee kunnen we nog gemakkelijk de eeuw rond, en tegen dan is foto-voltaische energie (wat nu minstens een factor 10 te duur is) een pak goedkoper, en hebben we misschien fusie.
__________________
NEE tegen assimilatie! NEE tegen racisme! |
![]() |
![]() |
![]() |
#112 | |
Banneling
Geregistreerd: 3 mei 2005
Berichten: 1.275
|
![]() Citaat:
Zoals je ziet biedt nucleaire energie absoluut geen oplossing. Er is gewoon niet genoeg splijtstof. Ook dat is een zeer schaarse bron. Fotovoltaïsche technologieën zijn zeker interessant, maar zoals je zegt, veel te duur, en bovendien ook gemaakt van schaarse bronnen. De fotovolt-industrie klaagt nu al over de steeds groeiende kosten van silicium. En je moet gigantisch veel kapitaal vernietigen om een beetje impact te maken bij de vervanging van een op petroleum gebaseerde wereld-economie. Fusie zou natuurlijk cool zijn, maar daar wordt al vijftig jaar aan gewerkt, zonder resultaat. Bovendien zal de experimentele reactor ITER pas ten vroegste binnen 3 decennia resultaat opleveren, en dat is dan nog maar één test-exemplaar. Niemand weet of we zullen slagen. Je kan dus op geen enkele alternatieve energiebron een concreet en duurzaam beleid bouwen. En geen enkele investeerder zal radicaal in alternatieve investeren, precies omwille van dezelfde onzekerheden. Intussen schrijdt de tijd voort, en wordt het probleem groter en groter. Peak Oil is niet zozeer een probleem van theoretisch al dan niet haalbare alternatieven; het is een probleem omdat een hele reeks realiteiten (economische groei, bevolkingsgroei, landbouwproductie, etc...) ervoor zorgen dat de alternatieven niet geïmplementeerd worden. Daarom is het zo gevaarlijk. Nogmaals: geen enkele investeerder zal in foto-voltaïsche spitstechnologie investeren, zolang hij 100% meer winst kan maken met zijn belegging in oliefirma's. Daarom zal peak oil een echte crash worden. Investeerders zullen massaal weglopen van olie-investeringen wanneer ze inzien dat peak oil reëel is; en tegen die tijd is er geen hefboom meer om alternatieven te ontwikkelen. Op het vlak van alternatieven geldt het banale too little, too late. |
|
![]() |
![]() |
![]() |
#113 |
Banneling
Geregistreerd: 5 maart 2004
Berichten: 4.052
|
![]() Voil�*, ik heb al voldoende ammo ingedaan, straks naar den aldi om 4000 pakken amanda plat water in te doen !
je weet maar nooit tegenwoordig ! |
![]() |
![]() |
![]() |
#114 | |
Europees Commissaris
Geregistreerd: 28 februari 2003
Locatie: Podgorica
Berichten: 6.351
|
![]() Citaat:
Ik zie trouwens niet in waarom er plots een crash zou moeten zijn. Ik zou eerder een algemeen stijgende energieprijs verwachten. Met meer en meer investeringen in alternatieven naarmate die door de hogere prijzen interessanter worden. Er is geen reden tot een crash omdat er niet "plots" geen olie meer is.
__________________
[SIZE=1] ![]() Laatst gewijzigd door boer_bavo : 19 mei 2005 om 12:41. |
|
![]() |
![]() |
![]() |
#115 |
Minister
Geregistreerd: 17 februari 2005
Locatie: Gent
Berichten: 3.352
|
![]() @Bavo: kan ik mij in vinden. Het enige probleem wordt, dat het verbruiken van olie duurder en duurder wordt en dus meer en meer een aangelegenheid van mensen met [teveel] geld. In die zin zal de SUV wel politiek correct zijn: zo snel als mogelijk op die piek aankomen, om te laten zien dat zij wèl die prijs kunnen betalen en anderen n�*et (mede daardoor).
__________________
[size=4][/size][size=5]Het ontstaan van AIDS - belangrijk![/size]
|
![]() |
![]() |
![]() |
#116 |
Banneling
Geregistreerd: 3 mei 2005
Berichten: 1.275
|
![]() Een interessant overzichtje (uit the UK) van de sectoren die zeer petro-intensief zijn, en dus eerst zullen te lijden hebben onder de stijgende olieprijzen.
Bron: http://www.statistics.gov.uk/STATBAS....asp?vlnk=5690 Some sector highlights: (Figures in Million tonnes oil equivalent) Agriculture: 0.679 Textiles: 0.999 Pulp and paper: 1.741 Refined petro products: 6.479 Fertilizers and Nitrogen compounds: 1.050 Plastics and synthetic rubber: 0.785 Pesticides and agro chemicals: 0.108 Man made fibres: 0.120 Plastic products: 1.530 Pharmaceuticals: 0.715 Recycling: 1.176 Motor Vehicles: 1.049 Wholesale trade: 1.875 Road freight: 7.484 Hotels and restaurants: 0.948 Railways: 0.362 Buses and coaches: 1.444 Metro and light rail: 0.033 Water Transport: 7.941 Air Transport: 13.681 Post and Telecoms: 0.663 Public admin (excluding defence): 1.454 Public admin defence: 2.253 Education: 1.971 Heath, vet and social work: 2.717 Consumer expenditure – not travel: 38.100 Consumer expenditure – travel: 22.647 Laatst gewijzigd door oliepiek : 20 mei 2005 om 12:54. |
![]() |
![]() |
![]() |
#117 |
Minister
Geregistreerd: 17 februari 2005
Locatie: Gent
Berichten: 3.352
|
![]() Let me guess: de consument?
__________________
[size=4][/size][size=5]Het ontstaan van AIDS - belangrijk![/size]
|
![]() |
![]() |
![]() |
#118 |
Banneling
Geregistreerd: 3 mei 2005
Berichten: 1.275
|
![]() Iemand sprak laatst over Siberië en de Arctische plaat die nog vol niet-ontdekte olievelden zouden zitten. Gelieve dit artikel er even op na te slaan, dan bent u tenminste op de hoogte van de werkelijke situatie.
http://en.rian.ru/analysis/20050520/40388719.html WESTERN OIL MAJORS NEED PARTNERSHIPS WITH RUSSIANS TO TAP ARCTIC SHELF 17:47 Print version MOSCOW (RIA Novosti economic commentator Vasily Zubkov) - The Russian government has named the development of oil and gas reserves in Eastern Siberia and Arctic continental shelf as its top priority until 2020. Although Economic Development and Trade Minister German Gref recently complained the shelf's upstream operations should have been started a decade ago, many ministers and the premier himself understand that Russia's far-northern fields could become attractive for investment only at today's high prices for oil and gas. Last week, Natural Resources Minister Yury Trutnev presented the government with a report on his ministry's proposals on how to develop the continental shelf. On the whole, the government approved Trutnev's Arctic oil-and-gas strategy. Critics had a word or two to say, but in six months, with the relevant corrections made, the Mineral Resources Ministry is expected to submit a strategy that will be rubber-stamped. One reason behind such harmony was probably Trutnev's warning that by 2015 too few high-output fields will be left on Russia's mainland. By saying there would be no profitable oil left on the mainland in ten years' time, the minister sent a strong alarming message, potentially about a looming nationwide energy deficit, to the Cabinet. Three quarters of Western and Eastern Siberian oilfields are already nearing 50% depletion, while the reserves of newly discovered fields are on average five times lower than those found 30 years ago. Russia's huge energy potential is mainly built on the world's largest continental shelf, with two-thirds of its 6.2 million square kilometers promising for oil and gas. Some analysts estimate Russia's Arctic shelf reserves at a quarter of the planet's remaining hydrocarbons. The Arctic shelves of the Barents and Pechora Seas, and the Karsk Sea shelf near the Ob delta, are particularly rich in mineral resources, with a predominance of natural gas (it accounts for 90% in the hydrocarbons combined figure). Few Arctic sites have been appropriately explored so far - only 7% of the gas reserves and 3% of the oil reserves, but some fields could already be put into production: Shtokmanovskoye (gas condensate), Prirazlomnoye, Rusakovskoye, Leningradskoye, and the best-explored Sakhalinskye. In fact, Sakhalin projects already account for 0.5% of all national oil production. The ministry has promised up to 13 billion metric tons of oil and up to 20 trillion cubic meters of gas will be explored on the shelf, with a stable oil output of 10 million tons (and 30 billion cubic meters of gas) per year in five years' time. By 2020, Trutnev said, output may rise to 95 million tons of oil and 320 billion cubic meters of gas per year. All this, however, requires the state to invest around $1 billion in exploration for 10 to 15 years to come. In return, Trutnev promised up to $5 billion in earnings on license auctions alone. Exploration is only the tip of the iceberg, though. To develop Arctic resources, you need an Arctic fleet, special drilling rigs, infrastructure, environmental projects, etc., that will cost between $70 billion and $110 billion. Only international oil majors can invest that much money and Russia understands it will never develop its Arctic reserves completely on its own. Only successful experience and state-of-the-art Arctic upstream technology that many foreign (notably, Norwegian) companies have could solve the problem of what to do with the oil under the Arctic waters. The Natural Resources Ministry has proposed amending product-sharing regulations to let foreigners into the industry. Certainly, oil majors will only come to the Arctic shelf in partnerships with Russian companies, a protectionist measure that, industry experts believe, is reasonable and justified, to make sure that foreigners do not take complete control over strategic oilfields. According to Sergei Suverov, chief world market analyst with Gazprom, Russia's natural gas monopoly, a partnership with a solid Russian state-run company could be attractive to foreign partners because in this case their investments will have political support from the state. The government's move to outline its broad agenda on the Arctic reserves is an important step forward, but far from the first one. State-owned Rosneft has been preparing production at the 65.3-million-ton Prirazlomnoye, the largest field in the Pechora Sea, and Shtokmanovskoye (3 trillion cubic meters of natural gas and 27 million tons of oil) for several years. Commercial operations are scheduled to begin in 2010 and the needed investment has been put at $19-$21 billion. A new special drilling rig is being completed on the Prirazlomnoye field. It is a unique system that explores, extracts, and stores oil. In addition, an upgraded Arkticheskaya oilrig (drilling depth- 6.5km) is to be commissioned in 2007 and Rosneft is building its own fleet of a dozen Arctic tankers, refueling icebreakers, and environmental vessels. Moreover, in partnership with Gazprom, the oil company is considering the joint development of the Shtokmanovskoye deposit with several Western majors. In other words, Russia is turning northward. And the development of the Arctic shelf will become the nation's largest project for the next 20 years. |
![]() |
![]() |
![]() |
#119 | |||
Burgemeester
Geregistreerd: 25 mei 2005
Berichten: 581
|
![]() Kijk, als we naar het ecologisch model kijken zitten gas en olie nooit zover van elkaar.
Het is dus normaal dat onder de cyberische plaat olie zit, de eneige vraag is echter hoeveel exact maar gezien er zoveel gas zit (Rusland is grootste gas leverancier) zal het olieaandeel sowieso kleiner zijn. Maar : helaas heeft de mens niet de moeite gedaan om verder te blijven zoeken naar bronnen eens de olieprijs zo goedkoop was. Hoogstwaarschijnlijk zitten er onder de oceanen nog wel ettelijke bronnen maar natuurlijk moeten ze nog toegankelijk zijn want de oceanen is her en der redelijk diep en hoe dieper, hoe steviger het kostenplaatje dat eraan verbonden is. Citaat:
Citaat:
Het zal er een beetje van afhangen wat zowel de Amerikanen en de Russen naar boven pompen en dat dan ook bekendmaken. Citaat:
Trouwens, de Saudi's inversteren wel degelijk in alternatieve energieën hoor maar het blijkt een zo moelijke materie te zijn om 'en mass' fotovoltaïsche panelen te maken met een veel beter rendement en dat aan een veel lagere kostprijs, dus alvast niet op silicium basis. Oliebedrijven zien het ook wel aankomen en zoeken ook naar de alternatieven. Niks voor niks is BP (Britisch Petroleum) nu Beyond Petroleum en Shell wordt Shell Renewables...genoemd worden. Maar waarom zouden we alle last op die bedrijven moeten leggen terwijl we zelf zoveel verbruiken. Europa zou de normen moeten verstrengen waartoe bvb een CV installatie moet voldoen maar nog belangrijker is dat de USA drastisch bespaart want zij zijn nog altijd de grootste verbruikers gerekend aan liters/individu. M.a.w. ieder zou zijn/haar steentje moeten bijdragen om gewoon minder fossiele brandstoffen te verbruiken. Ik weet het, dat is een utopie. |
|||
![]() |
![]() |
![]() |
#120 |
Banneling
Geregistreerd: 1 juni 2005
Berichten: 8.258
|
![]() Exodus,
Ik geef je met ales wat je noemt gelijk wat ik zo heb kunnen lezen. Natuurlijk wordt er door de elite veel onderdrukt. Mensen wees toch niet zo naief! Verdiep je eens In Tesla, Lloyd Zibb, Victor chauberger, Wilhelm Reich... Pindar |
![]() |
![]() |