![]() |
Registreren kan je hier. Problemen met registreren of reageren op de berichten? Een verloren wachtwoord? Gelieve een mail te zenden naar [email protected] met vermelding van je gebruikersnaam. |
|
Registreer | FAQ | Forumreglement | Ledenlijst |
Maatschappij en samenleving Dit subforum handelt over zaken die leven binnen de maatschappij en in die zin politiek relevant (geworden) zijn. |
![]() |
|
Discussietools |
![]() |
#121 | |
Banneling
Geregistreerd: 11 januari 2004
Berichten: 66.569
|
![]() Citaat:
Toon mij 1 wetenschappijke publicatie waarin klimaatverandering kompleet ontkracht wordt. Gepubliceerd in bvb nature, en niet van een of andere conservatie blog.... |
|
![]() |
![]() |
![]() |
#122 |
Banneling
Geregistreerd: 11 januari 2004
Berichten: 66.569
|
![]() Overigens, ik preek nu even tegen mijn eigen kerk: waarom spenderen we 2.5 miljard euro aan zoiets als Envisat als we met die 2.5 miljard euro gigantisch veel hadden kunnen doen voor het milieu ?
Als we dat investeerden in de ontwikkeling van duurzame technologie...amai ! |
![]() |
![]() |
![]() |
#123 | |
Eur. Commissievoorzitter
Geregistreerd: 23 juli 2003
Berichten: 9.858
|
![]() Citaat:
__________________
Out of the blue, into the black |
|
![]() |
![]() |
![]() |
#124 | |
Europees Commissaris
Geregistreerd: 4 juni 2003
Locatie: Hasselt
Berichten: 7.169
|
![]() Citaat:
|
|
![]() |
![]() |
![]() |
#125 |
Eur. Commissievoorzitter
Geregistreerd: 23 juli 2003
Berichten: 9.858
|
![]() Als u daar zo hard in geïnteresseerd bent, verwijs ik u graag naar o.a. de wetenschappers Broecker, Driscoll and Haug en Rahmstorf wiens papers u zult terugvinden in Nature and the like.
__________________
Out of the blue, into the black |
![]() |
![]() |
![]() |
#126 |
Europees Commissaris
Geregistreerd: 4 juni 2003
Locatie: Hasselt
Berichten: 7.169
|
![]() Het "leuke" aan die film is dat ze, buiten de tijdspanne en de extreme daling van -150 °C of zoiets, ze volledig kan bewaarheid worden met het uitvallen van de oceaniale stromingen.
|
![]() |
![]() |
![]() |
#127 | |
Perm. Vertegenwoordiger VN
Geregistreerd: 26 februari 2004
Berichten: 18.625
|
![]() Citaat:
![]()
__________________
Bedankt!
|
|
![]() |
![]() |
![]() |
#128 | ||||
Perm. Vertegenwoordiger VN
Geregistreerd: 6 januari 2003
Locatie: US
Berichten: 14.572
|
![]() Citaat:
Citaat:
Citaat:
Van de derde autheur heb ik nog niets gelezen, op zijn website kan ik echter het volgende lezen: Citaat:
__________________
In het begin was er niets, wat ontplofte. |
||||
![]() |
![]() |
![]() |
#129 |
Perm. Vertegenwoordiger VN
Geregistreerd: 17 februari 2005
Berichten: 8.177
|
![]() |
![]() |
![]() |
![]() |
#130 | ||
Perm. Vertegenwoordiger VN
Geregistreerd: 17 februari 2005
Berichten: 8.177
|
![]() Citaat:
De golfstroom kan niet stilvallen, daar ze gedreven wordt door de wind en de rotatie van de Aarde. Zolang de aarde dus blijft draaien en de wind blijft blazen, hoeven we ons geen zorgen te maken. Bron Met dank aan Realclimate: Citaat:
Laatst gewijzigd door Pieke : 27 april 2007 om 00:10. |
||
![]() |
![]() |
![]() |
#131 | ||
Perm. Vertegenwoordiger VN
Geregistreerd: 17 februari 2005
Berichten: 8.177
|
![]() Citaat:
Citaat:
|
||
![]() |
![]() |
![]() |
#132 | |
Perm. Vertegenwoordiger VN
Geregistreerd: 17 februari 2005
Berichten: 8.177
|
![]() Citaat:
Ik kan je (en eigenlijk iedereen die erin geïnteresseerd is) ten zeerste deze discussie op de blog van Steve McIntyre aanraden als antwoord op je post. |
|
![]() |
![]() |
![]() |
#133 |
Perm. Vertegenwoordiger VN
Geregistreerd: 17 februari 2005
Berichten: 8.177
|
![]() |
![]() |
![]() |
![]() |
#134 | |
Perm. Vertegenwoordiger VN
Geregistreerd: 17 februari 2005
Berichten: 8.177
|
![]() Citaat:
|
|
![]() |
![]() |
![]() |
#135 |
Perm. Vertegenwoordiger VN
Geregistreerd: 6 januari 2003
Locatie: US
Berichten: 14.572
|
![]() Het authoriteitsargument, waren de anderen op?
__________________
In het begin was er niets, wat ontplofte. |
![]() |
![]() |
![]() |
#136 | |
Perm. Vertegenwoordiger VN
Geregistreerd: 6 januari 2003
Locatie: US
Berichten: 14.572
|
![]() Citaat:
http://www.realclimate.org/index.php...nsch-responds/
__________________
In het begin was er niets, wat ontplofte. |
|
![]() |
![]() |
![]() |
#137 | |
Eur. Commissievoorzitter
Geregistreerd: 23 juli 2003
Berichten: 9.858
|
![]() Citaat:
Broecker en Driscoll+Haug hebben inderdaad aangetoond wat de impact is van de golfstroom op regionale klimaten, maar ook wat de drijvende krachten zijn van die golfstroom, en dat het uitvallen van die golfstroom zeer frequent gebeurde in het (verre) verleden. Rahmstorf heeft kunnen aantonen dat gedurende het Holoceen (de huidige periode tot 10 ky geleden) deze events eerder zelden voorkwamen, omdat het klimaat nu normaal minder variabel is dan tijdens een glaciale periode. Rahmstorf heeft echter ook kunnen modelleren dat een sterke freshwater input (zoals bij het afbreken van ijsbergen - zie bvb. ook Seidov en Maslin, Geology, 1999), er toch zulke events kunnen voorkomen (Nature 2001 en Climate Change 2000). Daarna zijn er dan nog anderen gekomen (bvb. Schiller et al., Climate dynamics, 2004) die dit model bevestigd hebben. Maar geen nood, deze laatsten wezen er ook op dat wanneer die freshwater input stopt, de conveyor belt zich zal herstellen (weliswaar na 200 jaar, maar tijd is toch maar relatief, nietwaar...). Conclusie: het stoppen van de conveyor belt is een realistisch, mogelijk gevolg van global warming. En voor de positivisten: Maar er is niets aan de hand, want we zullen er niet dood van gaan.
__________________
Out of the blue, into the black |
|
![]() |
![]() |
![]() |
#138 |
Eur. Commissievoorzitter
Geregistreerd: 23 juli 2003
Berichten: 9.858
|
![]() Neen, maar als u zulke beweringen doet als u hierboven gedaan hebt, krijgt u dat wel dik in uw gezicht terug.
__________________
Out of the blue, into the black |
![]() |
![]() |
![]() |
#139 | ||
Eur. Commissievoorzitter
Geregistreerd: 23 juli 2003
Berichten: 9.858
|
![]() Citaat:
2. Ik verwijs dan ook graag naar de papers van Seidov, die poneert dat zelfs minimale veranderingen in saliniteit de conveyor belt kunnen doen van patroon veranderen: Citaat:
3. Ik vermoed dat er toch iets is fout gelopen in de brief die je citeert, aangezien het toch voldoende is aangetoond dat de conveyor belt zeer frequente periodes van shutdown en restart heeft gekend nog geen 100000-10000 jaar geleden (tijdens de laatste glaciale periode). Waarom die dan "miljoenen jaren stabiel" zou blijven is me een raadsel (glaciale klimaten zijn immers periodisch en de volgende is geen miljoenen jaren van ons verwijderd).
__________________
Out of the blue, into the black |
||
![]() |
![]() |
![]() |
#140 |
Eur. Commissievoorzitter
Geregistreerd: 23 juli 2003
Berichten: 9.858
|
![]() Nog wat over de conveyor belt (geschreven een paar jaar terug, dus nog toen er geen zekerheid was over de mate van impact van antropogene broeikasgassen op het klimaat):
[quote] Geophysical Monograph Series Volume 126 THE OCEANS AND RAPID CLIMATE CHANGE: PAST, PRESENT, AND FUTURE Edited by Dan Seidov, Bernd J. Haupt, and Mark Maslin INTRODUCTION Ocean Currents of Change: Introduction <DIV align=justify>Scientists have traditionally assumed that climate change occurred on a timescale far in excess of a single human lifespan. In fact, significant global and regional climate changes were thought to occur incrementally over many centuries or millennia. Recently, however, our view of climate change has altered. Paleoclimatic studies now show that the global climate can change quite rapidly. There is substantive evidence that in the past, at least from a regional perspective, mean annual temperatures changed by several degrees Celsius over a few centuries or even decades. Evidence from the instrumented record and from climate models also indicates that humans have the potential to alter the Earth’s climate significantly within one century – although the actual sensitivity of the climate system to the growing concentration of anthropogenic carbon dioxide and other greenhouse gases in the atmosphere is highly uncertain. In this regard, paleoclimatology offers perspectives that can enhance our understanding of how the global climate system changes. If we are to develop scenarios of possible climate change with greater reliability from the near to far future, the understanding provided by paleoclimatology will play a significant role. Needless to say, the attribution of the temperature changes that occurred over the last century to a specific set of factors is the subject of considerable debate. The suggestion that the current warming is predominately related to human emissions of greenhouse gases is countered by a recognition that the climate system is also recovering from the Little Ice Age, the last major climate deterioration. Whichever view, in whole or in part, proves correct, both raise important questions about the role of the ocean in climate change. If we are now in a period of enhanced global warming, for instance, what consequences might we face with the melting of ice in the Arctic or Antarctica? Is it possible that global warming will present unexpected, even counterintuitive consequences, such as altering the deep–water conveyor belt and plunging Europe into a new Little Ice Age? Are the causative factors of the Little Ice Age linked to the internal variability of the Earth system? Answering such questions is difficult. Each requires that we considerably improve our understanding of the climate system, and how it works. Paleoclimatology provides us with a key perspective here. Combining the geologic record with climate models offers a powerful tool by which to assess climate system dynamics on decadal to millennial timescales. More specifically, we are now able to focus our research on the role of the world ocean, a principal element in governing climate system dynamics on these time scales. Numerical models provide much of the foundation for projecting future climate change. For more than three decades, increasingly complex computer simulations have assessed the potential impact of anthropogenic greenhouse gases on climate. The attempts to look into the geologic past through a computer terminal have a shorter history. Applications of numerical models used in present–day atmosphere and ocean simulations in paleoclimate studies began slightly more than two decades ago, e.g., Gates, [1976]; Barron [1983]; Kutzbach and Guettner [1984]; Manabe and Broccoli [1985]; Seidov [1986]; Bryan and Manabe [1988]; Barron and Peterson [1989]; Maier-Reimer et al. [1990], to name just a few examples (the special issue of Paleoceanography prefaced by Crowley [1990] and Crowley and North [1991] provide more detail on early paleoceanographic modeling). Early efforts demonstrated that simulations of past climates and ocean circulation patterns have the potential to provide a number of valuable insights into the behavior of the climate system. More advanced and sophisticated paleoclimate and paleoceanographic modeling studies are now yielding significant information about present and possible future climate tendencies. Earth system history provides a unique contribution to understanding climate change that is principally different from efforts that focus solely on modeling the future. The geologic record contains abundant information that records global changes on a variety of spatial and temporal scales. In particular, the marine record provides a wealth of evidence on past climate changes. Thus, computer models of past climate change on the millennial time scale can be at least partly verified against geologic data – an option that does not exist for predicted future change. Moreover, paleoclimatology provides an important lesson by demonstrating that climate changes, externally and internally driven, can occur extremely quickly, even approaching human time scales. Much of the irregularity and abruptness of these climate changes can be attributed to the ocean. Thus, ocean currents are true “winds of change,” the source of significant climate alterations. For this reason, the last two decades have witnessed an explosion of paleoreconstructions and modeling of the deep ocean and the climatic links associated with the glacial–to–interglacial transition of the Pleistocene. These last two million years of climate history contain a record of substantial climate fluctuation between warmer and colder states with numerous apparent instabilities. The role of the ocean in these fluctuations is still not entirely understood. The ocean, with its thermal, freshwater and dynamic impacts, controls our environment in a variety of ways. These controls are evident in the nature of ocean–atmosphere interactions, sea–ice dynamics, and in sea level changes. The ocean’s role is thought to be dominant on decadal to millennial timescales because of its enormous heat capacity and its capability to redistribute heat by ocean currents. Although these time intervals are too long for the atmosphere to play a dynamically important role, they are too short to associate with changes in the Earth’s orbital parameters, ice sheet dynamics, or tectonic activity. In addition, we must consider the growing evidence that the thermohaline circulation represents one of the key pacemakers of global climate, given its apparent sensitivity to relatively small changes of freshwater in the high latitudes. Further support of its importance stems from the speculation that anthropogenic global warming may threaten the stability of this oceanic overturning, potentially providing a considerable challenge to human societies. In his marvelous new book, The Two–Mile Time Machine, Richard Alley points out that “most paleoclimatologists spend their time looking at ocean sediments” [Alley, 2000]. Most popular oceanographic books, of course, focus on surface ocean currents, using common examples such as the Gulf Stream to capture the significance of the ocean in climate. However, most ocean modelers direct substantial attention to the so–called meridional overturning streamfunction, a mathematical abstraction that describes the volume of water that circulates in the vertical plane. Present–day oceanography recognizes that the meridional overturning is an intrinsic and powerful mechanism by which the ocean imposes vital thermal control over the Earth’s climate. Slow thermohaline circulation, which is driven by density contrasts between low and high latitudes and between the surface and deep layer of the ocean, appears to be the most important link in the climate system on decadal to centennial time scale, and perhaps on even longer time intervals, as this circulation is responsible for the lion part of meridional oceanic poleward heat transport. The key focus of this volume is thus “oceanic overturning” with studies drawn from ice core research, marine sediments, and oceanic modeling. New evidence from ice cores and deep-sea sediments shows that the climate of the two hemispheres may not be synchronized in their response to climate forcing (e.g., Blunier et al. [1998]). These findings add new questions concerning the role of the ocean thermohaline circulation. What is the potential for differential impacts involving both the northern and southern hemisphere? What governs the observed synchronicity? How do changes in freshwater fluxes alter their impacts? In response, we focus on the feedbacks that link ocean circulation with other elements of the climate system. The engine of long–term climate change, the deep–ocean circulation system, can dramatically change in response to freshwater impacts that are usually associated with melting of some elements of the cryosphere, either as sea ice melting or ice sheets surges. The discovery of cold deepwater in the equatorial regions was followed by early notions that large–scale deep ocean motion was caused by density contrasts (these findings can be traced back to the eighteenth and early nineteen centuries — see details in Gill [1982]). Because motion in the abyss is predominantly geostrophic, with weak and slow turbulent mixing in the deep layers, the water density can be modified essentially only at the sea surface in contact with the atmosphere. Hence, the ocean global thermohaline circulation depends on how intensive the buoyancy flux is across the sea surface in the high latitudes. An understanding of how this oceanic overturning works was first provided by the Stommel–Arons theory [Stommel and Arons, 1960], which describes a scheme of a dipole high–latitudinal sinking of dense water in the northern North Atlantic in the Northern Hemisphere and in the Weddell and Ross Seas in the Southern Hemisphere (the most recent and enlightening explanation of this keystone theory is given by Pedlosky [1996]). Certainly the most important element in this scheme is the formation of deep water: North Atlantic Deep Water (NADW) produced in the deep convection sites in the Nordic Seas and northern North Atlantic, and Antarctic Deep Water (AABW) formed around Antarctica but primarily in the Weddell Sea. Thus, the first understanding of bi–polarity of the thermohaline circulation origin had been put forth. Another important issue concerns the role of freshwater. Understanding the importance of salinity in ocean dynamics goes back to the Goldsbrough model [Goldsbrough, 1933], which suggests that, theoretically, the ocean circulation on a sphere can be maintained by evaporation and precipitation only, or, equivalently, by density contrasts caused by surface freshwater fluxes altering salinity distributions (also see a discussion of the Goldsbrough model in Stommel [1957]). However, real advances in our comprehension of the role of salinity in climate are provided in the pioneering work of Bryan [1986] followed by key studies of the stability of the ocean thermohaline circulation (e.g., Manabe and Stouffer [1988]; [1988]; Weaver et al. [1991]). A thermohaline circulation driven by buoyancy fluxes across the sea surface was shown to be sensitive to high–latitudinal density variations and to have more than one stable regime. In essence, salinity has, unlike temperature, no simple restoring feedbacks in the ocean–atmosphere system and therefore can be one of the crucial elements responsible for nonlinearity of climate dynamics, including bifurcation of the circulation regime (e.g., Rahmstorf [1995a]). The growing interest in paleoclimate modeling, and in an improved understanding of the role of freshwater in climate change, coincided with the development of new concepts about global ocean circulation. Based on extensive observational, theoretical and modeling efforts, a new vision of the global interhemispheric and interoceanic water transport in the deep-ocean flow system began to emerge about a decade ago (e.g., Gordon [1986]; Broecker and Denton [1989]; Cox [1989]). This new image of deep-ocean currents as a major player has been transformed into the concept of a “global ocean conveyor” connecting the most remote ocean regions and being most sensitive to high-latitudinal freshwater fluxes, and thus to high-latitudinal salinity fluctuations (a “salinity conveyor belt” according to Broecker [1991]). Further progress in understanding of freshwater impacts in the high latitudes has been achieved through a number of studies (e.g., in modeling effort of Weaver et al. [1991; Maier-Reimer et al. [1993]; Manabe and Stouffer [1995]; Rahmstorf [1995b] to name just a few). The current paradigm of the global ocean thermohaline conveyor is that it is driven by the formation of the NADW, with surface poleward currents compensating the NADW outflow (e.g., a review in [1992] and a discussion in Boyle and Weaver [1994]). As the NADW crosses the equator, there must be a compensating flow at the surface that maintains continuity of the ocean circulation. The compensating northward warm surface flow crosses the equator and thus provides cross–equatorial heat transport to the high latitudes in the Northern Hemisphere in the Atlantic sector. This cross-equatorial warm flow allows northern Europe to enjoy a far warmer climate than the countries in the Southern Hemisphere at the same distance from the equator. Thus, the high latitudes are potent regulators of the impact of the ocean on global climate (e.g., Stocker et al. [1992]; Stocker [1994]; Sakai and Peltier [1995]; Broecker et al. [1999]; Schmittner and Stocker [1999];
__________________
Out of the blue, into the black |
![]() |
![]() |